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Abstract

Image-based 3D reconstruction plays an important role
in many real-world applications, including virtual reality,
robot perception, and autonomous driving. 3D reconstruc-
tion can now be achieved using single-view images, but lit-
tle work has been done in reconstruction from input with
occlusions, which brings in more loss of information to this
difficult 2D-to-3D ill-posed problem. In this project, we
propose a GAN-based paradigm built upon the topology
modification network (TMNet) baseline to improve 3D ob-
ject reconstruction from single view images with occlusion.
We use TMNet to generate 3D meshes, PyTorch3D to ren-
der images, and a patch-based discriminator to distinguish
real and fake samples. Both quantitative and qualitative
experiments show that our GAN-based approach achieves
better results than the baselines on the chairs category in
ShapeNet. The code of our project is at 1.

1. Introduction
Image-based 3D reconstruction refers to the process of

using 2D images to infer the 3D geometry and structure of
objects. It plays an important role in many applications,
including virtual reality, robot perception, and autonomous
driving. Traditional approaches, such as stereo-based and
shape-from-silhouette methods, require sufficient input im-
ages of the same object taken by a well-calibrated camera,
which can be unrealistic in many situations [7]. As the pres-
ence of 3D shape dataset enables shape encoding in deep
neural networks, 3D reconstruction can now be achieved
using single-view images. But little work has been done in
reconstruction from input with occlusions, which brings in
more loss of information to this difficult 2D-to-3D ill-posed
problem.

Although existing methods on 3D mesh reconstruction
from single view images have achieved impressive results
on images with clean background, the reconstruction qual-
ity on images with occlusions is still very low. When part
of the object is occluded, there is not enough visual cues to

1https://github.com/ZZWENG/CS231A_Project

guide the reconstruction of the occluded part. Yet the prob-
lem of occlusion can easily occur in important applications.
For example, in self-driving scenarios, the target car is of-
ten blocked by other cars or objects, leading to difficulties
in reconstructing the objects and scenes for safe driving. As
one learning-based attempt to tackle this, [11] modified [12]
by adding a one-hot encoding of the object category to the
input feature to the mesh decoder, so that the reconstruction
network would make a reasonable “guess” of the occluded
part based on the object category, which, however, may not
be known in real-life applications.

In this project, we propose a GAN-based paradigm built
upon TMNet baseline [12], to improve 3D object recon-
struction from single view images with occlusions. The
generator uses TMNet to generate 3D meshes from oc-
cluded 2D images. To allow the discriminator easily distin-
guish the ground truth and the generated meshes, we render
the 3D meshes into 2D images, and feed them into the dis-
criminator. We then utilize a patch-based discriminator to
distinguish on both high and low frequencies components
of features. The generator and discriminator are jointly
optimized to push the generator to produce more realistic
meshes without occlusion. Due to the availability of the
dataset and compute resources, we only test our approach
on one class (ShapeNet ”chair”).

The rest of this paper is organized as follows. In Section
II, we review related works on 3D reconstruction, and gen-
erative adversarial networks. The proposed method is illus-
trated in Section III. Section IV discusses databases, eval-
uation metrics, results, and analysis. In the end, Section V
summarizes the report and discusses future work.

2. Related Work

2.1. 3D Reconstruction

To reconstruct a 3D object, the object shape and geom-
etry need to be first stored in some form of representation,
and various forms have been in use, including voxel, point
cloud, and mesh. Voxel representation utilizes a voxel grid
with occupancy to represent a shape, but costs a lot of mem-
ory [3]. A sparser representation of 3D shape is point cloud,
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Figure 1. Overview of our method. Red-dashed box shows the TMNet-based generator. Blue-dashed box shows the discriminator. A
differentiable render is added in between to produce 2D images from generated and ground truth meshes.

which presents a shape by a set of points in the 3D space [4].
Mesh, in particular, has gained attentions after the success
of Pixel2Mesh [14, 15] for its capability to model shape
details and its lightweight for easy deformation. Given a
single-view image I , the aim of mesh-based reconstruction
is to reconstruct the surface S of it. A mesh can be defined
as M = (V,E, T ), where V ∈ R3 represents the mesh ver-
tices, E represents edges, and T represents triangles. To
achieve the reconstruction aim, a common method is to de-
form a mesh template M0 until it is as close as the target
mesh M . The aforementioned Pixel2Mesh method fails
in some shape reconstruction cases as it cannot change the
topology of the template mesh. But the topology modifica-
tion network (TMNet) proposed in [12], which our project
builds upon, has shown its superior performance in address-
ing the previoulsy mentioned issue by progressively alter-
nating between mesh deformation and topology modifica-
tion.

2.2. Generative Adversarial Network

Generative adversarial network (GAN) is able to gener-
ate images with desirable features and with strong similar-
ity with target images or objects [5]. GAN consists of two
components, which are a generator and a discriminator. As
a generative model, GAN aims to learn the distribution pg
over data x with a noise variable z distributed by pz . The
generator G(z, θg) is parameterized by θg and the discrim-
inator D(x, θd) is parameterized by θd. The discriminator
D is optimized so that it can distinguish between real and
fake samples and maximize the probability when providing
either kind of the samples, while the generator aims to fool
the discriminator by minimizing log(1 − D(G(z))). The
objective function can be derived by Kullback-Leiber diver-
gence and Jensen-Shanon divergence, where the details can

be found in [5]. However, the optimization of GANs is rel-
atively harder than other networks due to mode collapse. To
address such problem, Wasserstein GAN is proposed in [1]
by introducing the Wasserstein loss. Another problem asso-
ciated with the original GAN is the lack of control over the
generated images, a problem that was tackled by the condi-
tional GAN (cGAN) [10]. cGan uses the class embedding
as the condition to make the generative results controllable.
The work of Pix2Pix [8] uses 2D image as its condition to
enforce the generated images as close as possible to some
particular images, an approach that our project would like
to similarly adopt.

3. Methodology

Our proposed methodology springs from the observation
that objects within a certain category can exhibit large vari-
ance in shapes. Therefore, directly training a mesh genera-
tion network on masked images with supervised loss, such
as as Chamfer Distance (CD), would increase the bias of the
mesh generation network. We would like to introduce some
guidance on the shape reconstruction process to achieve the
de-occlusion effect. Hence, we propose to employ a GAN-
based TMNet approach.

An overview of our proposed workflow is in Figure 1.
First, the masked images are fed to the TMNet to generate
3D meshes. Then, given the output mesh and the ground
truth mesh, we use a differentiable renderer to render the
meshes into images. The rendered images from generated
and ground truth meshes are sent into a patch discriminator
to classify if they are real or fake images. At inference stage,
only the generator will be used to reconstruct 3D meshes.

Details of the proposed network are described in Section
3.1 - 3.4.

2



3.1. Generator: Topology Modification Network

TMNet is an end-to-end learning pipeline that progres-
sively modifies a template mesh to fit target surface from a
given input image [12]. There are two major parts in the net-
work, feature extraction and mesh deformation. For feature
extraction, TMNet uses a residual network with 18 layers
(ResNet18) to learn a 1024-dimension feature embedding
of the input image and passes the embedding to the mesh
deformation part. For mesh deformation, TMNet has three
sub-modules to achieve the task: a deformation module, a
topology modification module, and a boundary refinement
module.

The mesh deformation module maps the vertices on tem-
plate mesh to target surface while maintaining their connec-
tivity. A total of 4 losses are used to supervise the defor-
mation process: a CD loss Lcd to regress the location of
mesh vertices, a normal loss Lnormal to maintain the con-
sistency of mesh surface normals, a smooth regularization
loss Lsmooth to enforce relative location among vertices
neighbors, and an edge regularization loss Ledge to reduce
outliers. CD uses a locally matching strategy to compute the
l2-distance with the nearest neighbor for predicted samples
Spd and ground truth samples Sgt as

Lcd(Spd, Sgt) =
∑
p∈Spd

min
q∈Sgt

||p− q||22

+
∑
q∈Sgt

min
p∈Spd

||p− q||22.
(1)

The topology modification module estimates an error be-
tween the ground truth using an error estimation network fe,
and then prunes the faces based on predicted error. Faces
with large errors are discarded in this process. The error
estimation network uses the quadratic loss to estimate error
as

Lerror =
∑
p∈Spd

|fe(p)− ep)|2, (2)

where ep is the ground truth error, and fe is the error esti-
mation network.

Finally, the boundary refinement module refines the open
boundaries introduced by the previous face pruning step.
The module ensures the smoothness of the output mesh
based on the rule that boundary vertices are only allowed to
move the 2D plane defined by the two boundary edges that
intersect at the vertex. The boundary regularization loss is
defined as

Lbound =
∑
p∈E

∣∣∣∣∣∣ ∑
q∈N (p)

p− q
||p− q||

∣∣∣∣∣∣, (3)

where p ∈ E is the set of vertices on the open boundaries,
and q ∈ N (p) is the set of neighbouring vertices of p on the
boundaries.

All neural networks used for these three modules consist
of four 1D convolution layers, and subtle changes regarding
their activation functions. Each module has a different ob-
jective as ground truth vertices, errors, and neighbour ver-
tices respectively. The details of the modules configurations
are given in Table 1. The optimal training of TMNet is to
train the first two modules individually for two times sepa-
rately, and then jointly train the three modules in the end.

Therefore, the total reconstruction loss Lrecon of TMNet
is the sum of the aforementioned losses with λi controlling
their weights as

Lrecon = Lcd + λ1Lerror + λ2Lbound
+ λ3Lnormal + λ4Lsmooth + λ5Ledge.

(4)

In this project, TMNet acts as the generator denoted as
G(x, z), where x is the input image and z is a random vec-
tor.

3.2. Differentiable Renderer

The conditional GAN we adopted requires the input im-
age stacked as a condition before sending it to the discrim-
inator. To achieve this, we use a differentiable renderer to
first render the 3D meshes into 2D images. Following the
tutorial2, we use Pytorch3D [13] to render the meshes. The
renderer consists of a resterizer to project and rasterize the
inputs, and a shader to texure, light and blend the image. In
each iteration of the training process, the generator takes a
masked image of a chair, which is a rendering of the chair
model at a pre-defined view angle with occlusion. The ren-
derer takes the output of the generator, which is a recon-
structed mesh consisting of predicted vertex locations and
faces, and renders the output image at the same view point.
The ground truth mesh is also rendered at the same view
point. For simplicity, we ignore the texture of the meshes
during rendering.

3.3. Discriminator: Patch-based Classifier

The aim of the discriminator D is to classify the gener-
ated fake images (i.e. rendering of the reconstructed mesh)
and ground truth real images (i.e. rendering of the ground
truth mesh). While the reconstruction loss of generator
sufficiently pushes for generation of low-frequency compo-
nents, a patch-based discriminator or PatchGAN in [8] puts
more attention on local patches and is able to recover high-
frequency components by modeling the image as a Markov
random field and assuming that the pixels are independently
separated by more than one patch diameter.

Instead of discriminating real and fake images with a sin-
gle Boolean value, the patch-based discriminator classifies

2https://github.com/facebookresearch/
pytorch3d/blob/master/docs/tutorials/dataloaders_
ShapeNetCore_R2N2.ipynb
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Layer Kernel Stride,
Padding Output Size

Deformation Module
Input 1027× 2562
Conv1D 1 1 1, 0 1027× 2562
BatchNorm 1 1027× 2562
Conv1D 2 1 1, 0 513× 2562
BatchNorm 2 513× 2562
Conv1D 3 1 1, 0 256× 2562
BatchNorm 3 256× 2562
Conv1D 4 1 1, 0 3× 2562
Tanh 3× 2562

Error Estimate Network
Input 1027× 10000
Conv1D 1 1 1, 0 1027× 10000
BatchNorm 1 1027× 10000
Conv1D 2 1 1, 0 513× 10000
BatchNorm 2 513× 10000
Conv1D 3 1 1, 0 256× 10000
BatchNorm 3 256× 10000
Conv1D 4 1 1, 0 1× 10000
Sigmoid 1× 10000

Boundary Refinement Module
Input 1027× 119
Conv1D 1 1 1, 0 1027× 119
BatchNorm 1 1027× 119
Conv1D 2 1 1, 0 513× 119
BatchNorm 2 513× 119
Dropout 1 513× 119
Conv1D 3 1 1, 0 256× 119
BatchNorm 3 256× 119
Dropout 2 256× 119
Conv1D 4 1 1, 0 2× 119
Tanh 2× 119

Table 1. Configuration of TMNet modules. Conv1D stands for
1D convolutions; BatchNorm stands for 1D batch normalization
operations; Tanh and Sigmoid are activation functions.

the result on am×m patch. In detail, the true or false value
will be padded to the same size as the output single channel
feature map before the adversarial loss is calculated. The
discriminator network is a 2D convolutional network. De-
tails of the network used for the discriminator is shown in
Table 2.

3.4. Loss Function

The overall loss L of the proposed GAN-based 3D re-
construction is as follows

L = λaLadv(G,D) + λrLrecon(G), (5)

Layer Kernel Stride,
Padding Output Size

Input 224× 224× 6
In Conv2D 1× 1 1, 1 224× 224× 8
B1 Conv2D 1 3× 3 1, 1 224× 224× 16
B1 Conv2D 2 3× 3 1, 1 224× 224× 16
B1 MaxPool 2× 2 2, 0 112× 112× 16
B2 Conv2D 1 3× 3 1, 1 112× 112× 32
B2 Conv2D 2 3× 3 1, 1 112× 112× 32
B2 BatchNorm 112× 112× 32
B2 MaxPool 2× 2 2, 0 56× 56× 32
B3 Conv2D 1 3× 3 1, 1 56× 56× 64
B3 Conv2D 2 3× 3 1, 1 56× 56× 64
B3 BatchNorm 56× 56× 64
B3 MaxPool 2× 2 2, 0 28× 28× 64
B4 Conv2D 1 3× 3 1, 1 28× 28× 128
B4 Conv2D 2 3× 3 1, 1 28× 28× 128
B4 BatchNorm 28× 28× 128
B4 MaxPool 2× 2 2, 0 14× 14× 128
Out Conv2D 3× 3 1, 0 14× 14× 1

Table 2. Configuration of discriminator’s network . B stands for
blocks; Conv2D stands for 2D convolutions; MaxPool stands for
2D max pooling operations; BatchNorm stands for 2D batch nor-
malization operations.

whereLa is an adversarial loss andLrecon is the reconstruc-
tion loss defined in Section 3.1. λa and λr are the weight
coefficients for the adversarial and reconstruction parts.

The adversarial loss is defined as a binary cross entropy

Ladv(G,D) =−
[
Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z))]
]
,

(6)

where y is the ground truth unmasked image. The random-
ness is implicitly represented by the dropout in the gener-
ator, rather than an explicit input noisy vector z. The op-
timization of the adversarial loss is a min-max game, in
which the discriminator D tries to minimize it by classi-
fying the real and fake images while the generator G tries
to maximize it by generating close to ”real” images to fool
the discriminator.

4. Experiment
4.1. Dataset and Experiment Setup

We evaluate our model on the “chair” category in
ShapeNet [2], a large-scale 3D object dataset. ShapeNet
contains approximately 50,000 3D CAD models covering
about 50 categories. The “chair” category is used by a lot
of the previous single-view reconstruction methods such as
[12]. It contains over 7000 chairs in the training set and
over 1300 chairs in the test set. Similar to [12], we will
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use the experiment set up in [6] and use the rendered im-
ages in [3]. Each 3D model has 24 rendered RGB images,
each representing a different view angle. The model takes
the rendered images as input. We will sample 10,000 points
uniformly on each 3D shape surface as the ground truth.

To simulate occlusion in input images, we remove the
pixel values from either left or right half of the images by
setting the RGBA values to (0, 0, 0, 0) for each pixel. Im-
ages are randomly selected to have their left or right half
removed. Currently we have generated masked images for
the ShapeNet “chair” class.

Our implementation is in Python. We use PyTorch and
Pytorch3D deep learning frameworks. The TMNet imple-
mentation is based on [12]. We develop our models and run
experiments on Google Cloud Platform.

4.2. Evaluation

We evaluate the proposed method both qualitatively and
quantitatively.

Qualitative Result Demonstration. We render and vi-
sualize the reconstructed objects to demonstrate the perfor-
mance, as discussed in Section 4.5.

Quantitative Result Evaluation Metric. We employ
two widely-adopted evaluation metrics for 3D reconstruc-
tion, Chamfer distance (CD) and Earth Mover’s distance
(EMD) [9], which are the same as TMNet in [12]. These
metrics require us to sample meshes into sample points. For
the details of the calculation of CD, please refer to (1). In
terms of EMD, it calculates the minimum distance between
points in Spd and bijected points from Sgt as

EMD(Sgt, Spd) = min
φ:Sgt→Spd

∑
p∈Sgt

||p− φ(p)||, (7)

where φ(p) is the closest point in Spd to p.
Following the quantitative evaluation protocol of [12],

the evaluation is based on 2,048 ground truth points and
2,048 points uniformly sampled from the generated meshes.
The CD is multiplied by 1,000 and the EMD is multiplied
by 100.

4.3. Implementation Details

We train the models on Google Cloud Platform and Sher-
lock with single GPU. The training of a full TMNet model
consists of 4 steps: pretraining, train subnet1, train subnet
2, and train subnet 3. Pretraining takes about 4 hours. The
training of subnet 1, 2 and 3 takes 6 hours each. In to-
tal, training a TMNet from scratch takes about 22 hours.
To train the GAN version, we fine-tune the discriminator
for 120 epochs where each epoch takes about half an hour,
bringing the total training time for the GAN extension to
about 60 hours.

For all experiments, we use the following hyperparame-
ters:

• Number of epochs for TMNet: 420 epochs each for
pretrain and subnet 1; 120 epochs each for subnet 2
and 3.

• Number of epochs for GAN: We fine-tune subnet3
with adversarial loss for additional 120 epochs.

• Batch size: 32.

• Learning rate: 0.001. Decay learning rate after 300
and 400 epochs when training subnet1.

• Discriminator learning rate: 0.001.

4.4. Quantitative Evaluation

To showcase the effectiveness of our approach as com-
pared to the vanilla TMNet, we conducted 4 experiments.
We report the quantitative scores for each experiment in Ta-
ble 3.

For the first and second experiment, we train TMNet on
unmasked images and evaluated on unmasked and masked
images respectively. We see that when tested on masked
images, the CD and EMD scores drop significantly, as ex-
pected.

In experiment 3, we train and evaluated the model on
masked images. For experiment 4, we further fine-tune sub-
net3 with the adversarial loss as described previously. Note
that during the adversarial training, the ground truth infor-
mation about the meshes is not used at all. We rely on the
discriminator to refine the output of the generator. Hence,
we choose to start training from the end model (i.e. all the
modules in TMNet) such that the generator has a decent
initialization. From there, the discriminator can pick up the
learning instantly.

We show in Table 3 that our GAN-based approach
achieves the best CD and EMD scores when evaluated on
masked images.

For reference, we also did an experiment where we train
the discriminator using the generator trained up to subnet2,
and then we train subnet3 using solely the generator loss as
in GAN. Evaluating the trained model on masked images,
this version achieved 13.387 CD and 4.853 EMD, which is
worse than the best reported numbers in Table 3.

Another thing to note is that both CD and EMD are cal-
culated in terms of the locations of the 3D vertices and do
not entail any evaluation of the quality of the reconstructed
faces. We will showcase the quality of the generated faces
in qualitative evaluation by comparing the mesh output from
different experiments.

4.5. Qualitative Evaluation

Both CD and EMD are quantitative measures of the qual-
ity of the reconstructed vertices. We turn to the qualitative
results for the quality of the reconstructed faces. We show
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Train on unmasked images
Experi. No. Model Test images CD EMD

1 TMNet unmasked 6.201 4.320
2 TMNet masked 26.860 9.336

Train on masked images
Experi. No. Model Test images CD EMD

3 TMNet masked 8.300 4.570
4 Ours masked 8.284 4.521

Table 3. Quantitative results on chairs category. Best results when
testing on masked images are in bold. For both metrics, lower
values indicate better vertex reconstruction quality.

qualitative reconstruction results of a few chair examples in
Figure 2 and Figure 3.

In Figure 2 we show the output of 4 experiments. The
setup of experiment 1 gives quite reasonable reconstruction
result. However, when we take a pretrained model (trained
on unmasked images) and evaluate on masked images as in
experiment 2, the reconstruction gets much worse qualita-
tively. In experiment 3, we train on masked images. The
setup of experiment 3 is similar to utilizing data augmen-
tation during training. The training loss is still the same as
in experiment 1 and 2. We see that the reconstruction is
much better as compared to experiment 2. In our approach
(experiment 4), the output is slightly better than the output
of experiment 3, as we observe smoother edges of the chair
(e.g. the bottom edge of the second chair).

In conclusion, we see that our approach outperforms the
naı̈ve baseline in experiment 2. When compared to exper-
iment 3, the difference is subtle, but we do see smoother
edges of the chair with our GAN-based approach.

5. Conclusion and Future Work
Single-view reconstruction from RGB images with oc-

clusion is a very challenging task. Directly applying state-
of-the-art models (e.g. TMNet) on images with occlusion
gives bad reconstruction results. In this project, we pro-
posed a GAN-based approach for single-view reconstruc-
tion for masked images. Through quantitative experiments
and qualitative evaluation, we showed that our approach can
be effective in guiding the reconstruction of the occluded
part.

For future work, we plan to experiment with more realis-
tic occlusion scenarios (e.g. randomly masking out a small
part of the image, occlusion in real-world images). For in-
stance, in reality, a chair is often blocked by part of the table
such that its lower half is missing. Simulating such occlu-
sion and test on real-world images could be an interesting
direction to explore.

In addition, we will also extend the method to cover more
categories than just chairs. Since there is not much shape

variation within the chair category, our improvement over
experiment 3 (train on masked images with supervised loss)
is marginal. However, since the generator trained with ad-
versarial loss is more generalizable, we expect that our ap-
proach could make significant improvement when we con-
sider reconstruction of multiple categories.
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